Ultra-Countable Functors and Descriptive Group Theory

نویسنده

  • M. Lafourcade
چکیده

Let Ȳ be a n-dimensional curve. Is it possible to compute topoi? We show that g̃ = 2. It would be interesting to apply the techniques of [20] to covariant topoi. This reduces the results of [20] to an approximation argument.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computable Functor from Graphs to Fields

We construct a fully faithful functor from the category of graphs to the category of fields. Using this functor, we resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure S, there exists a countable field F with the same essential computable-model-theoretic properties as S. Along the way, we develop a new “computable category the...

متن کامل

The Homeomorphism Problem for Countable Topological Spaces

We consider the homeomorphism problem for countable topological spaces and investigate its descriptive complexity as an equivalence relation. It is shown that even for countable metric spaces the homeomorphism problem is strictly more complicated than the isomorphism problem for countable graphs and indeed it is not Borel reducible to any orbit equivalence relation induced by a Borel action of ...

متن کامل

Homogeneous Structures

A relational first order structure is homogeneous if every isomorphism between finite substructures extends to an automorphism. Familiar examples of such structures include the rational numbers with the usual order relation, the countable random and so called Rado graph, and many others. Countable homogeneous structures arise as Fraı̈ssé limits of amalgamation classes of finite structures, and h...

متن کامل

Groups and Ultra-groups

In this paper, in addition to some elementary facts about the ultra-groups, which their structure based on the properties of the transversal of a subgroup of a group, we focus on the relation between a group and an ultra-group. It is verified that every group is an ultra-group, but the converse is not true generally. We present the conditions under which, for every normal subultra-group of an u...

متن کامل

Martin’s Conjecture, Arithmetic Equivalence, and Countable Borel Equivalence Relations

There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin’s conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013